Problem Statement
Find the multiplication matrix of two square matrices A and B of size n x n each.
Example
Input

Output

Explanation
The result we get is after the multiplication of Matrix A and B.
Brute force Approach
The idea is to use 3 nested loops to calculate the value for each cell individually.
Pseudocode
Algorithm MULTIPLY_MATRIX(A, B, C)
for i <- 1 to n do
for j <- 1 to n do
C[i][j] <- 0
for k <- 1 to n do
C[i][j] <- C[i][j] + A[i][k]*B[k][j]
end
end
end
Implementation in C++
#include <bits/stdc++.h>
using namespace std;
// print the matrix
void print(vector<vector<int> > matrix) {
for(int i = 0; i < matrix.size(); i++){
for(int j = 0; j < matrix[i].size(); j++){
cout << matrix[i][j] << ' ';
}
cout << endl;
}
}
void multiply(vector<vector<int>> &A, vector<vector<int>> &B, vector<vector<int>> &C) {
int N = 4;
for (int i = 0; i < N; i++) {
for (int j = 0; j < N; j++) {
C[i][j] = 0;
for (int k = 0; k < N; k++) {
C[i][j] += A[i][k]*B[k][j];
}
}
}
}
int main() {
// Input Matrix A
vector<vector<int>> A = {{2, 2, 3, 1},{1, 4, 1, 2},{2, 3, 1, 1}, {1, 3, 1, 2}};
// Input Matrix B
vector<vector<int>> B = {{2, 1, 2, 1},{3, 1, 2, 1},{3, 2, 1, 1}, {1, 4, 3, 2}};
vector<vector<int>> C(4, vector<int>(4));
multiply(A, B, C);
// Printing the result
print(C);
return 0;
}

You can also try this code with Online C++ Compiler
Run Code
Output
20 14 14 9
19 15 17 10
17 11 14 8
16 14 15 9
Time Complexity
There are three for loops that enclose the inner statement. So, The Running time of the above algorithm is O(N^3).
Space Complexity
A new matrix is used to store the result of the multiplication. So, the space complexity is O(N^2).
Optimized Approach
We can implement Strassen’s Matrix Multiplication and the idea is to use the divide and conquer approach to divide the matrices into sub-matrices of size N/2 and then solve these sub-matrices using a formula given by Strassen's method
Pseudocode
// Algorithm to calculate multiplication of two matrices
// Here A and B are the input Matrices
// and C is the output Matrix and n represents the size
Algorithm STRASSEN_METHOD (A, B, C, int n)
if n == 1 then
C = C + (A) * (B)
else
STRASSEN_METHOD (A, B, C, n/4)
STRASSEN_METHOD (A, B + (n/4), C + (n/4), n/4)
STRASSEN_METHOD (A + 2 * (n/4), B, C + 2 * (n/4), n/4)
STRASSEN_METHOD (A + 2 * (n/4), B + (n/4), C + 3 * (n/4), n/4)
STRASSEN_METHOD (A + (n/4), B + 2 * (n/4), C, n/4)
STRASSEN_METHOD (A + (n/4), B + 3 * (n/4), C + (n/4), n/4)
STRASSEN_METHOD (A + 3 * (n/4), B + 2 * (n/4), C + 2 * (n/4), n/4)
STRASSEN_METHOD (A + 3 * (n/4), B + 3 * (n/4), C + 3 * (n/4), n/4)
end
Implementation in C++
// Strassen’s Matrix Multiplication
#include <bits/stdc++.h>
using namespace std;
// Size of two matrices
#define ROW_1 4
#define COL_1 4
#define ROW_2 4
#define COL_2 4
// print the matrix
void print(vector<vector<int> > matrix) {
for(int i = 0; i < matrix.size(); i++){
for(int j = 0; j < matrix[i].size(); j++){
cout << matrix[i][j] << ' ';
}
cout << endl;
}
}
// Add two matrices and return the result
vector<vector<int>> add(vector<vector<int> > A, vector<vector<int> > B, int split_index, int multiplier = 1) {
for (auto i = 0; i < split_index; i++)
for (auto j = 0; j < split_index; j++)
A[i][j] = A[i][j] + (multiplier * B[i][j]);
return A;
}
vector<vector<int> >
strassen_multiplication(vector<vector<int> > A, vector<vector<int> > B) {
// calculating the size of matrix
int col_1 = A[0].size();
int row_1 = A.size();
int col_2 = B[0].size();
int row_2 = B.size();
// checking if multiplication is possible or not
// between the input matrices
if (col_1 != row_2) {
cout << "The Two Matrices cannot be multiplied";
return {};
}
// creating an empty matrix to store the result
vector<int> result_row(col_2, 0);
vector<vector<int> > result(row_1, result_row);
// Base case
// if size of matrix is 1
if (col_1 == 1)
result[0][0]
= A[0][0] * B[0][0];
else {
// split index
int split_index = col_1 / 2;
vector<int> row_vector(split_index, 0);
// Splitting the matrices in sub matrices
vector<vector<int> > a00(split_index, row_vector);
vector<vector<int> > a01(split_index, row_vector);
vector<vector<int> > a10(split_index, row_vector);
vector<vector<int> > a11(split_index, row_vector);
vector<vector<int> > b00(split_index, row_vector);
vector<vector<int> > b01(split_index, row_vector);
vector<vector<int> > b10(split_index, row_vector);
vector<vector<int> > b11(split_index, row_vector);
// calculating and storing the result
// inside our quadrants
for (auto i = 0; i < split_index; i++)
for (auto j = 0; j < split_index; j++) {
a00[i][j] = A[i][j];
a01[i][j] = A[i][j + split_index];
a10[i][j] = A[split_index + i][j];
a11[i][j] = A[i + split_index]
[j + split_index];
b00[i][j] = B[i][j];
b01[i][j] = B[i][j + split_index];
b10[i][j] = B[split_index + i][j];
b11[i][j] = B[i + split_index]
[j + split_index];
}
// Calculating the multiplication using the formula
// given by strassent algorithm
vector<vector<int>> p1(
strassen_multiplication(a00, add(b01, b11, split_index, -1))
);
vector<vector<int>> p2(
strassen_multiplication(add(a00, a01, split_index), b11)
);
vector<vector<int>> p3(
strassen_multiplication(add(a10, a11, split_index), b00)
);
vector<vector<int>> p4(
strassen_multiplication(a11, add(b10, b00, split_index, -1))
);
vector<vector<int>> p5(
strassen_multiplication(add(a00, a11, split_index),add(b00, b11, split_index))
);
vector<vector<int>> p6(
strassen_multiplication(add(a01, a11, split_index, -1),add(b10, b11, split_index))
);
vector<vector<int>> p7(
strassen_multiplication(
add(a00, a10, split_index, -1),
add(b00, b01, split_index)
)
);
// calculating the result
vector<vector<int> > result_00(
add(add(add(p5, p4, split_index), p6, split_index), p2, split_index, -1)
);
vector<vector<int> > result_01(
add(p1, p2, split_index)
);
vector<vector<int> > result_10(
add(p3, p4, split_index)
);
vector<vector<int> > result_11(
add(add(add(p5, p1, split_index), p3, split_index, -1), p7, split_index, -1)
);
// calulating and storing the result
// inside matrix
for (auto i = 0; i < split_index; i++){
for (auto j = 0; j < split_index; j++) {
result[i][j] = result_00[i][j];
result[i][j + split_index] = result_01[i][j];
result[split_index + i][j] = result_10[i][j];
result[i + split_index][j + split_index] = result_11[i][j];
}
}
// clearing all the arrays
a00.clear();
a01.clear();
a10.clear();
a11.clear();
b00.clear();
b01.clear();
b10.clear();
b11.clear();
p1.clear();
p2.clear();
p3.clear();
p4.clear();
p5.clear();
p6.clear();
p7.clear();
result_00.clear();
result_01.clear();
result_10.clear();
result_11.clear();
}
return result;
}
int main() {
// Input Matrix A
vector<vector<int>> A = {{2, 2, 3, 1},{1, 4, 1, 2},{2, 3, 1, 1}, {1, 3, 1, 2}};
// Input Matrix B
vector<vector<int>> B = {{2, 1, 2, 1},{3, 1, 2, 1},{3, 2, 1, 1}, {1, 4, 3, 2}};
// Getting the result
vector<vector<int> > result(strassen_multiplication(A, B));
// Printing the result
print(result);
}

You can also try this code with Online C++ Compiler
Run CodeOutput
20 14 14 9
19 15 17 10
17 11 14 8
16 14 15 9
Time Complexity
Using strassen's matrix multiplication method we can split the problem of size n into 7 subproblems of size (n - 2).
The recurrence equation for strassen's matrix multiplication method is T(n) = 7.T(n/2). After solving the recurrence relation we get O(n^2.81) as the running time of Strassen’s matrix multiplication algorithm.
Space Complexity
A new matrix is used to store the result of the multiplication. So, the space complexity of Strassen’s matrix multiplication method is O(N^2).
Read More - Time Complexity of Sorting Algorithms
Frequently Asked Questions
What is Strassen’s Matrix Multiplication?
The Strassen algorithm is a recursive method for matrix multiplication in which each recursive step divides the matrix into four submatrices of dimensions n/2 x n/2.
Which technique is used in Strassen's matrix?
Strassen's matrix is an efficient technique that is used in matrix multiplication. This technique used the divide and conquer approach which reduces the number of calculations in matrix multiplications. The larger matrices get decomposed into smaller matrices which is an efficient approach.
Why Strassen's matrix multiplication is better than ordinary matrix multiplication?
Strassen's matrix multiplication is better than ordinary matrix multiplication because of its approach. The approach is divide and conquer which lesser the number of calculations which ultimately saves time and also exhibits better cache memory than any ordinary matrix multiplication.
What are the 4 methods of matrix?
The popular 4 methods of matrix multiplication are standard matrix multiplication which is the naive method, the second is matrix chain multiplication, the next is Strassen's matrix multiplication and the fourth is block matrix multiplication.
Conclusion
In this article, we have extensively discussed a coding problem where we have to multiply two matrices and we used two different approaches to solve the problem, one is the brute force approach and the other is Strassen’s Matrix Multiplication method. We hope that this blog has helped you enhance your knowledge about the above question and if you would like to learn more. Check out more of our blogs related to coding questions First non-repeating character in a stream, How to efficiently implement k Queues in a single array, Sorting of Queue, and many more on our Website.
Recommended Problems:
You can also check Interview Experiences and Interview Preparation Resources if you are interested in cracking the technical interviews at top Product-based companies like Amazon, Microsoft, Uber, etc.