Given 'N' : 5 (number of packets) and 'M' : 3 (number of students)
And chocolates in each packet is : {8, 11, 7, 15, 2}
All possible way to distribute 5 packets of chocolates among 3 students are -
( 8,15, 7 ) difference of maximum-minimum is ‘15 - 7’ = ‘8’
( 8, 15, 2 ) difference of maximum-minimum is ‘15 - 2’ = ‘13’
( 8, 15, 11 ) difference of maximum-minimum is ‘15 - 8’ = ‘7’
( 8, 7, 2 ) difference of maximum-minimum is ‘8 - 2’ = ‘6’
( 8, 7, 11 ) difference of maximum-minimum is ‘11 - 7’ = ‘4’
( 8, 2, 11 ) difference of maximum-minimum is ‘11 - 2’ = ‘9’
( 15, 7, 2 ) difference of maximum-minimum is ‘15 - 2’ = 13’
( 15, 7, 11 ) difference of maximum-minimum is ‘15 - 7’ = ‘8’
( 15, 2, 11 ) difference of maximum-minimum is ‘15 - 2’ = ‘13’
( 7, 2, 11 ) difference of maximum-minimum is ‘11 - 2’ = ‘9’
Hence there are 10 possible ways to distribute ‘5’ packets of chocolate among the ‘3’ students and difference of combination (8, 7, 11) is ‘maximum - minimum’ = ‘11 - 7’ = ‘4’ is minimum in all of the above.
The first line of input contains an integer ‘T’ denoting the number of test cases.
The next ‘2*T’ lines represent the ‘T’ test cases.
The first line of each test case contains two space-separated integers ‘N’ denoting the number of packets of chocolate and ‘M’ denotes the number of students.
The second line of each test case contains ‘N’ space-separated integers denoting the number of chocolate in each of ‘N’ packets.
For each test case, print the minimum difference of the chocolates contained in the packets distributed to the students.
You don't need to print anything, it has already been taken care of. Just implement the given function.
1 <= T <= 50
2 <= M <= N <= 10^4
1 <= CHOCOLATES[i] <= 10^9
Time Limit : 1 sec
The idea is that generate all the possible subsets of size ‘M’ and checks the minimum difference that can be possible from all subsets.
The idea is based on the observation that to minimize the difference between a maximum number of chocolate in a packet and a minimum number of chocolate in the packet is that, always choose consecutive packets of chocolate in sorted order of a number of chocolates in a packet. In the below figure it is clear that the minimum difference can get by selecting consecutive packets of chocolate that is ( 1, 4, 7 ), and the difference is ‘7 - 1’ = ‘6’
Here is the algorithm :