1. You can return the list of values in any order. For example, if a valid triplet is {1, 2, -3}, then {2, -3, 1}, {-3, 2, 1} etc is also valid triplet. Also, the ordering of different triplets can be random i.e if there are more than one valid triplets, you can return them in any order.
2. The elements in the array need not be distinct.
3. If no such triplet is present in the array, then return an empty list, and the output printed for such a test case will be "-1".
The first line of the input contains an integer T, denoting the number of test cases.
The first line of each test case contains the integer N, denoting the size of the array.
The second line of each test case contains N space-separated integers denoting the array elements.
The third line of each test case contains the integer K, denoting the required sum for each triplet.
For each test case, every line of output contains three spaced integers denoting a valid triplet as described in the statement. Refer to sample input 2 for more clarification.
You do not need to print anything, it has already been taken care of. Just implement the given function.
1 <= T <= 50
1 <= N <= 10^3
-10^6 <= ARR[i] <= 10^6
-10^9 <= K <= 10^9
Time Limit: 1 sec
Longest Subarray With Zero Sum
Merge Two Sorted Arrays Without Extra Space
Merge Two Sorted Arrays Without Extra Space
Ninja And The Strictly Increasing Array
Negative To The End
Find Duplicate in Array