


1.Do not print anything, just return the root node of the tree.
2.Your constructed tree will be checked by doing an in-order traversal of the tree from the returned root node.
The first line contains an Integer 't' which denotes the number of test cases or queries to be run. Then the test cases follow.
The first line of input contains the elements of the tree in the level order form separated by a single space.
The second line contains an integer denoting the value to be inserted
If any node does not have left or right child, take -1 in its place. Refer to the example below.
Example:
Elements are in the level order form. The input consists of values of nodes separated by a single space in a single line. In case a node is null, we take -1 on its place.
For example, the input for the tree depicted in the below image would be :

1
2 3
4 -1 5 6
-1 7 -1 -1 -1 -1
-1 -1
Explanation :
Level 1 :
The root node of the tree is 1
Level 2 :
Left child of 1 = 2
Right child of 1 = 3
Level 3 :
Left child of 2 = 4
Right child of 2 = null (-1)
Left child of 3 = 5
Right child of 3 = 6
Level 4 :
Left child of 4 = null (-1)
Right child of 4 = 7
Left child of 5 = null (-1)
Right child of 5 = null (-1)
Left child of 6 = null (-1)
Right child of 6 = null (-1)
Level 5 :
Left child of 7 = null (-1)
Right child of 7 = null (-1)
The first not-null node (of the previous level) is treated as the parent of the first two nodes of the current level. The second not-null node (of the previous level) is treated as the parent node for the next two nodes of the current level and so on.
The input ends when all nodes at the last level are null (-1).
1.The above format was just to provide clarity on how the input is formed for a given tree.
2.The sequence will be put together in a single line separated by a single space. Hence, for the above-depicted tree, the input will be given as:
1 2 3 4 -1 5 6 -1 7 -1 -1 -1 -1 -1 -1
For each test case, the root node of the AVL tree with the given node inserted.
1 <= T <= 100
1<= N <= 3*10^3
Where ‘T’ is the total number of test cases and N denotes the number of nodes in the given binary tree.
Time limit: 1 second
Keeping in mind the above idea, we can devise the following recursive approach:
Guess Price
Unique BSTs
Unique BSTs
Unique BSTs
Kth Largest Element in BST
Two Sum IV - Input is a BST
Icarus and BSTCOUNT