


• The left subtree of a node contains only nodes with data less than the node’s data.
• The right subtree of a node contains only nodes with data greater than the node’s data.
• Both the left and right subtrees must also be binary search trees.
For the given binary tree :

The BST will be:

Note: Each node is associated with a unique integer value.
The first line contains an integer 'T' which denotes the number of test cases or queries to be run. Then the test cases follow.
The first line of each test case contains the elements of the tree in the level order form separated by a single space.
If any node does not have a left or right child, take -1 in its place. Refer to the example for further clarification.
Example:
Elements are in the level order form. The input consists of values of nodes separated by a single space in a single line. In case a node is null, we take -1 in its place.
For example, the input for the tree depicted in the below image would be :

1
2 3
4 -1 5 6
-1 7 -1 -1 -1 -1
-1 -1
Explanation :
Level 1 :
The root node of the tree is 1
Level 2 :
Left child of 1 = 2
Right child of 1 = 3
Level 3 :
Left child of 2 = 4
Right child of 2 = null (-1)
Left child of 3 = 5
Right child of 3 = 6
Level 4 :
Left child of 4 = null (-1)
Right child of 4 = 7
Left child of 5 = null (-1)
Right child of 5 = null (-1)
Left child of 6 = null (-1)
Right child of 6 = null (-1)
Level 5 :
Left child of 7 = null (-1)
Right child of 7 = null (-1)
The first not-null node (of the previous level) is treated as the parent of the first two nodes of the current level. The second not-null node (of the previous level) is treated as the parent node for the next two nodes of the current level and so on.
The input ends when all nodes at the last level are null (-1).
Note :
The above format was just to provide clarity on how the input is formed for a given tree.
The sequence will be put together in a single line separated by a single space. Hence, for the above-depicted tree, the input will be given as:
1 2 3 4 -1 5 6 -1 7 -1 -1 -1 -1 -1 -1
For each test case, print a single line containing the level order traversal of the modified binary tree.
The output of each test case will be printed in a separate line.
You do not need to print anything, It has already been taken care of. Just implement the function.
1 <= T <= 10 ^ 2
1 <= N <= 5 * 10 ^ 3
0 <= data <= 10 ^ 5 and data != -1
Where ‘N’ is the number of nodes in the tree, ‘T’ represents the number of test cases and ‘data' denotes data contained in the node of the binary tree.
Time Limit: 1 sec
We will use the fact that the inorder traversal of BST is sorted.
Here is the algorithm:
Two Sum IV - Input is a BST
Icarus and BSTCOUNT
Height of Binary Tree
Height of Binary Tree
Height of Binary Tree
Height of Binary Tree
Locked Binary Tree
Maximum Island Size in a Binary Tree